Activation of the sphingosine kinase-signaling pathway by high glucose mediates the proinflammatory phenotype of endothelial cells.

نویسندگان

  • Lijun Wang
  • Xiao-Ping Xing
  • Andrew Holmes
  • Carol Wadham
  • Jennifer R Gamble
  • Mathew A Vadas
  • Pu Xia
چکیده

Vascular endothelial cells are key targets for hyperglycemic damage that facilitates vascular inflammation and the vasculopathy associated with diabetes mellitus. However, the mechanisms underlying this damage remain undefined. We now demonstrate that hyperglycemia induces activation of sphingosine kinase (SphK), which represents a novel signaling pathway that mediates endothelial damage under ambient high glucose conditions. SphK activity was significantly increased in aorta and heart of streptozotocin-induced diabetic rats. Interestingly, this increase in SphK activity was prevented by insulin treatment, which achieved euglycemia in the diabetic animals. Hyperglycemia-induced increase in SphK activity was also evident in endothelial cells that received long-term exposure to high glucose (22 mmol/L). Studies using a small interfering RNA strategy demonstrated that endogenous SphK1, but not SphK2, is the major isoenzyme that was activated by high glucose. In addition, an increase in SphK1 phosphorylation was detected in a protein kinase C- and extracellular signal-regulated kinase 1/2-dependent manner, which accounts for the high glucose-induced increases in SphK activity. Importantly, inhibition of SphK1 by either a chemical inhibitor (N',N'-dimethylsphingosine) or expression of a dominant-negative mutant of SphK1 (SphK(G82D)), or SphK1-specific small interfering RNA, strongly protected endothelial cells against high glucose-induced damage, as characterized by an attenuation in the expression of proinflammatory adhesion molecules, adhesion of leukocytes to endothelial cells, and nuclear factor kappaB activation. Thus, interventions that target the SphK-signaling pathway may have the potential to prevent vascular lesions under hyperglycemic conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O 4: Kynurenine Impairs MbMEC Function in Vitro Through Arylhydrocarbon Receptor Activation

In the development of neuroinflammatory diseases, alterations of the blood brain barrier (BBB) represent key events. The integrity of the BBB is partially maintained by endothelia cells (ECs), since they actively limit the transmigration of immune cells. However, the factors that cause endothelial cells to develop an immune cell-permissive phenotype are poorly understood. In general, it has bee...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...

متن کامل

Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway

Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 97 9  شماره 

صفحات  -

تاریخ انتشار 2005